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Abstract : The flow fields for a sphere sedimenting through a Newtonian and two non-Newtonian 
liquids near a wall in a square tank are investigated using 3-D stereoscopic particle image 
velocimetry (PIV) and line integral convolution (LIC) methods. The PIV data were taken using 
an angular stereoscopic configuration with tilt and shift arrangements for the Scheimpflug 
condition and a pair of liquid correction prisms. Data were recorded from planes perpendicular 
and parallel to the wall for each fluid case over a range of distances from the wall. The PIV and 
LIC results highlight significant differences in the wake structure for all three cases. Out of 
plane flow was also found to persist up to two sphere diameters downstream in the wake for all 
cases. 

Keywords : Visualization, Stereoscopic PIV, LIC, Non-Newtonian. 

1. Introduction 
Modeling non-Newtonian fluid flows is regarded as a significant challenge both theoretically and 
numerically. Selected experimental cases, such as the sedimentation of a sphere through a quiescent 
polymer solution, have aimed to provide validation data for the numerical methods (Hassager, 1988). 
In the majority of previous work, centerline sedimentation of a sphere is recorded in an axisymmetric 
tank (e.g., see Tanner, 1963, Chhabra et al., 1980, Chmielowski et al., 1990). Alternatively, a more 
challenging case, which is now gaining attention, is the sedimentation of a sphere near a vertical 
wall (e.g. see Joseph et al., 1994, Becker et al., 1996). 

Flow visualisation has been used to investigate non-Newtonian sedimentation flow fields (Sigli 
and Coutanceau, 1977). Advanced techniques such as laser Doppler anemometry (LDA) and particle 
image velocimetry (PIV) (Adrian, 1991, Kim et al., 2002, Yu-Cheong et al, 2002) have also been used 
to measure the flow field surrounding the sedimenting sphere (Bush 1993, 1994, Arigo and McKinley, 
1998).  

Recently, flow visualization data has been obtained for the more complex example of a sphere 
sedimenting near a wall (Joseph et al., 1994, Becker et al., 1996, Singh and Joseph, 2000). These 
experiments have demonstrated unusual flow effects such as sphere rotation and migration towards 
and away from the wall. Harrison et al. (2001) have studied a sphere sedimenting near a planar wall 
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with 3-D stereoscopic PIV. In this case, sphere rotation and migration were not observed, but 
significant fluid motion perpendicular to the wall was recorded. 

More recently, to aid visualization of complex flow fields, PIV has been combined with line 
integral convolution (LIC) methods (Cabral and Leedom, 1993) as demonstrated by Longmire et al. 
(2003). In the following, angular stereoscopic PIV and LIC methods are used to study the 
sedimentation flow field from a Newtonian reference fluid, a constant shear viscosity (elastic) Boger 
fluid and a shear thinning fluid. To the authors knowledge, this is the first time PIV and LIC 
methods have been combined to aid the flow visualization of a non-Newtonian flow. 

2. Experimental Methods 
2.1 PIV Test Rig 
Figure 1 shows the stereoscopic PIV set-up. The system is based on an angular viewing arrangement 
with tilt and shift mounts to obtain the Scheimpflug condition. Pairs of liquid correction prisms are 
mounted on the tank for minimum image distortion (Prasad and Jensen, 1995). The camera 
semi-angle was set to between � = 15o − 25o for optimum performance with an expected error ratio of 
around 3.5 (Lawson and Wu, 1997). The liquid prisms were set at 15o to correspond with the 
minimum camera angle and filled with an approximately 50/50 water glycerol solution for refractive 
index matching. By employing two pairs of prisms mounted on the tank (as shown in Figs. 1a) and 
1b)) flow field measurements in planes both parallel to and perpendicular to the wall were obtained. 
The test tank had dimensions 200 mm (l) × 200 mm (w) × 500 mm (h). 

Two independent PIV systems were used to acquire the data. The first system was based on a 
pair of Kodak ES1.0 CCD’s (8 bit 1008 x 1018 pixels) with a New Wave Gemini Nd:YAG pulsed laser 
system (120 mJ/pulse) and was employed for the shear-thinning fluid. For both the Newtonian and 
Boger fluids a pair of NAC HiDCAM II high speed digital CMOS cameras (8 bit 1240 x 1024 pixels at 
500 frames per second) with a Photonics Industries GM30-5270E Nd:YLF pulsed laser (25 mJ/pulse) 
was employed. The acquisition process for both systems was triggered by monitoring a trigger laser 
beam placed in the path of the sedimenting sphere with a variable time delay before triggering. 

To improve the image quality on both sides of the sphere, a 0.5 mm thick dual light sheet 
system was generated as shown in Fig. 1. Also, to reduce reflections off the sphere surface, the flow 
was seeded with fluorescent Rhodamine 6G particles and the images viewed through a Kodak 
Wratten number 21 gel filter. The particle size range was between 75 μm−120 μm and seeding 
density corresponded to around 6-10 particles images per interrogation volume. 

 
2.2 Test Fluids 
Three different test fluids were employed:  a Newtonian reference fluid, a constant shear viscosity 
(elastic) Boger fluid and a shear thinning fluid. All fluids have similar zero shear viscosities. The 
Weissenberg and Reynolds numbers were manipulated by varying both the diameter (2.38 mm, 6.35 
mm, and 9.53 mm) and the sphere specific gravities over the range 2.45 and 8.03 with glass and steel 
respectively. In all fluids, each sphere was dropped at one diameter from the wall to the edge of the 
sphere at terminal velocity. For each of the experiments a characteristic shear rate was determined 
by dividing the terminal velocity by the sphere diameter. The Weissenberg and Reynolds numbers 
were determined using the terminal velocity. 

The Newtonian baseline fluid, over the broad range of shear rates, had a viscosity of 175 Pa*s. 
The Boger fluid had a constant shear viscosity of about η = 30 Pa*s. The shear rheology for the 
shear-thinning fluid showed a zero shear viscosity of 14 Pa*s with the first normal stress coefficient 
being marginally greater than the Boger fluid. More details of the fluid rheology may be found in 
Tatum et al. (2004). 

Table 1 summarizes the conditions employed for the experiments reported in this work. 
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Table 1. Summary of Experimental Conditions (NF – Newtonian Fluid, BF – Boger Fluid, 
STF – shear thinning fluid, SV – Side View). 

Name Diameter 
(mm) 

Material Wall 
Distance

Velocity 
(mm/s) 

Shear Rate 
(s-1) 

Reynolds 
Number 

Weissenberg 
Number 

NF.2 6.35 Metal 1 0.697 1.10E-01 3.73E-05 N/A 
BF.1 6.35 Glass 1 1.14 1.80E-01 3.43E-04 2.79E-02 
BF.4 6.35 Glass 1 (SV) 1.14 1.80E-01 3.43E-03 2.79E-02 
STF.3 9.53 Metal 1 83.5 1.32E+01 6.58E-02 2.41E+00 

  
2.3 PIV Data Processing 
Stereoscopic data processing was completed using ILA VidPIV software. The calibration procedure 
used images of a test grid with 2.5 mm diameter black dots on a 2.5 mm square with 9 separate grid 
translations at out of plane positions 0, ±8, ±15, ±50 and ±100% of the sphere diameter. PIV data 
processing was completed with a 16 x 16 pixel cross-correlation followed by an adaptive cross 
correlation all with a 50% overlap. Data were globally filtered, interpolated and smoothed with a 
Gaussian kernel before calculating the 3C data. Further post processing of the PIV data involved 
overlapping average vector maps with 20 samples each at different time delays. Estimated in plane 
and out of plane errors are 2.1% and 7.8% respectively both at full scale (see Prasad, 2000). 
 
2.4 LIC Methods 
Line integral convolution (LIC) is an image processing technique that allows visualization of a vector 
field. Cabral and Leedom (1993) first presented the technique in this context and since then it has 
been used as a general tool for visualizing vector fields. The technique involves locally filtering an 
image along field lines giving directional information at a high spatial resolution. Using white noise 
as the starting image, LIC can produce images reminiscent of particle suspension visualization of 

a) Parallel wall measurements       b) Perpendicular wall measurements 
Fig. 1. PIV experimental setup. 
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water flows. The implementation of LIC used in the following relies on a vector field defined on a 
regular grid obtained as described in section 2.3. The implementation is resolution independent in 
that the number of pixels of the image is independent of the grid on which the vectors are defined, in 
a similar manner to the implementation of Stalling and Hege (1995). (Although in our 
implementation the number of pixels per grid cell was restricted to an integer value.) Within each 
grid cell bilinear interpolation was used to evaluate vector values. The integration was performed 
using a 4th order Runge-Kutta formula with an embedded 3rd order formula allowing an adaptive 
step size to be used to maintain a given solution tolerance. In addition the method provided an 
interpolation which enabled accurate transition between grid cells. Essentially the method consists 
of integrating forwards and backwards a given distance along the streamline starting at the centre of 
each pixel. The pixel values of each pixel in the input image that lies under the integrated streamline 
are averaged and the resulting value forms the corresponding pixel in the output image. In order to 
enhance the LIC image we use a multi-pass method similar to that described by Okada and Kao 
(1997). For a given vector field we apply LIC firstly to a white noise image, secondly to the output 
image of the first pass and finally to the sharpen-filtered histogram-equalised output image of the 
second pass. This results in an image that is qualitatively better than that of the single pass LIC.  

In the following we also combine the LIC data with a coloured contour image to indicate 
velocity magnitude where red represents maximum velocity and black minimum velocity. 

3. Results and Discussion 
3.1 Newtonian Fluid 
Figure 2 shows a PIV vector map (in the image plane defined by Fig. 1a)) and a corresponding LIC 
image for the 6.35 mm metal sphere sedimenting in the Newtonian fluid one ball diameter from the 
wall. The sphere has a settling velocity of 0.697 mm/s. This Newtonian flow was used as a benchmark 
flow for comparison with the other two non-Newtonian flows. Recirculation zones either side of the 
sphere can be clearly seen centred around x/D = ±3D and y/D = 0, along with a wake extending 
downstream of the sphere. The wake appears to extend to at least 4D downstream of the sphere and 
±2D either side of the sphere. Visually the LIC image provides greater clarity than the PIV plots 
when isolating this type of flow structure. The addition of the background contours for velocity 
magnitude also greatly enhances the global information which the viewer has available. 

Examining the quantitative data in more detail, although the recirculation structure extends 
beyond the field of view, it falls to less than 2% of the sphere terminal velocity Vt at y/D = 0.5D and 
x/D = ±3.0D. The peak vertical component of fluid velocity recorded in this case was around 12% of Vt 
at y/D = 1.0D and x/D = ±1.0D. At 4.5D the presence of the recirculation zone is undetectable within 
experimental error. If the wake decay is also analyzed in more detail, consideration of the vertical 
component of velocity shows the wake to falling rapidly from nearly 70% of Vt at y/D = 0.5 to around 
12% of Vt at y/D = 3.0. 

Analysis of the 3C stereoscopic data showed that the effect of the wall was to generate 
substantial motion perpendicular to and away from the wall. In this case, peak out of plane velocities 
were found to be around 20% of the terminal velocity, Vt. 

 
3.2 Boger Fluid 
Figure 3 shows two LIC images for the Boger fluid. View a) reports a measurement plane parallel to 
the wall and view b) shows a view perpendicular to the wall. In both experiments the laser passes 
through the ball centreline. The Boger fluid is used to investigate the effect of elasticity by addition of 
a low concentration of polymer in the fluid. Careful selection of corn syrup as the base fluid also 
ensured negligible shear thinning effects. 
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If the view parallel to the wall is considered first, as with the Newtonian fluid recirculation 
zones, structures either side of the sphere are clearly evident and are centered at approximately y/D 
= 0. Comparison of the Boger fluid PIV data with the corresponding Newtonian fluid data shows the 
peak velocities in the zones to be approximately 40% lower than for the Newtonian flow with a peak 
velocity of the u component of around 7% of Vt. This significant reduction is attributed to the effect of 
elasticity as Reynolds number in both cases is low and in the creeping flow regime, i.e., Re < 0.01 
resulting in a dominant effect of viscous forces over inertial forces. 

Considering the view in which the laser sheet is perpendicular to the wall (Fig. 3b)), the 
influence of the wall on the left hand side of the image is clearly visible as only a single recirculation 
zone is now present at z/D = 5.0. This flow structure also generates the substantial motion 
perpendicular to the wall as found in the PIV data which ranges from between 5% of Vt for the Boger 
fluid to 20% of Vt for the Newtonian fluid. The lower motion perpendicular to the wall in the case of 
the Boger fluid is thought to be caused by the narrowing of the wake due to the effects of elasticity. 
This narrowing is evident from direct comparisons with the Boger fluid at the 1/e2 value of v/Vt which 
show the wake to have 30% less width than the Newtonian fluid. 
 
3.3 Shear-Thinning Fluid 
Figure 4 shows a LIC image of the shear thinning fluid taken in a plane parallel to the wall about the 
centerline of the sphere. The shear thinning fluid has a viscosity dependent on shear rate along with 
a degree of elasticity. Therefore isolation of the different fluid characteristics is more complex. 

The wake and recirculation zones are clearly visible where the latter flow structure is 
positioned at around x/D = ±2.5D and y/D = 0. Thus the shear thinning effect is to partially offset the 
effect of elasticity as the equivalent point in the flow field of the Boger fluid is nearer to the sphere 
(Fig. 3). The result of the recirculation zones moving away from the sphere is also to lengthen and 
widen the wake. However, the width of the wake of the shear-thinning fluid extends less in the             

0

0.594 cm/s

a) PIV Vector Map   b) LIC Image 
Fig. 2. Data from Newtonian Fluid (6.35 mm metal ball, 1 diameter from wall). 
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a) Measurement plane parallel to wall       b) Measurement plane perpendicular to wall 
 
Fig. 3. LIC images from a Boger Fluid (6.35 mm (a), 6.35 mm (b) diameter glass ball, 1 diameter 
from wall). 

Fig. 4. LIC image from a Shear Thinning Fluid (9.53 mm metal ball, 1 diameter from wall). 
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lateral direction than observed for the Newtonian fluid and is due to the competing effects of 
elasticity and shear thinning within the shear-thinning fluid. 

A “negative wake” flow structure is generated behind the sphere: downstream of the 
sedimenting sphere the fluid actually flows in the positive y direction (i.e., in the opposite direction 
from the sphere). In this case the negative wake starts to appear at 3.5-3.8 ball diameters behind the 
center of the sphere depending on the Weissenberg number. In this region, the magnitude of the 
negative wake is much smaller than that of the flow in the immediate vicinity of the sphere and the 
negative wake is dominated by the vertical component of velocity. The LIC image technique provides 
the clearest visualization of the position and structure formation of the negative wake. 

4. Conclusion 
This work has presented detailed flow visualization of the fluid motion generated by a sphere 
sedimenting one diameter from a wall in a number of non-Newtonian fluids and a reference 
Newtonian fluid. This flow presents a challenging test case in non-Newtonian fluid mechanics for 
numerical modelers. The image processing technique LIC was also used to enhance the recorded PIV 
data. Results showed the effect of elasticity in the Boger fluid was to significantly reduce the width of 
the wake by 30% and greatly reduce the peak recirculation velocity by 40% with a corresponding 
decrease in out of plane velocities from 20% in the Newtonian test case to less than 5% in the Boger 
fluid. Through studies with the shear-thinning fluid it is shown that only through a combination of 
shear-thinning and elastic effects is a negative wake produced. 
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